Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain.
نویسنده
چکیده
The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops: output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons. This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal computation into conscious experience.
منابع مشابه
Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملDiagnosis of brain tumor using image processing and determination of its type with RVM neural networks
Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio Systems
دوره 66 3 شماره
صفحات -
تاریخ انتشار 2002